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LE'ITER TO THE EDITOR 

Modulated structures of an Ising model with competing 
nearest-neighbour interactions 

M J de Oliveira and S R Salinas 
Instituto de Fisica, Universidade de SLo Paulo, Caixa Postal 20516, 01498 SLo Paulo SP, 
Brazil 

Received 26 September 1985 

Abstract. We use a two-dimensional mapping to analyse an Ising model with competing 
ferromagnetic and antiferromagnetic nearest-neighbour interactions on a Cayley tree. The 
phase diagram, which had some resemblance to the case of an Ising spin glass, displays 
some tricritical points and many modulated phases. 

In order to explain the modulated structures of magnetic materials Yoshimori (1959), 
Villain (1959) and Kaplan (1959) proposed a spin model with nearest- and next-nearest- 
neighbour interactions. A simplified version, the axial next-nearest-neighbour Ising 
(ANNNI)  model, was later introduced b$ Elliott (1961) and has received the attention 
of many authors (Bak and von Boehm 1980, Fisher and Selke 1980, Yokoi et al 
1981) due to the fact that it exhibits a rich phase diagram with many modulated phases 
and a Lifshitz point. A similar model with nearest- and next-nearest-neighbour interac- 
tions has been analysed by Yokoi et al (1985) on a Cayley tree in the limit of infinite 
coordination number. It has been shown that it displays an analogous phase diagram 
with many modulated phases and also a Lifshitz point. 

In this letter we analyse an Ising model on a regular Cayley tree of coordination 
z with nearest-neighbour interactions. The bonds are either ferromagnetic or antifer- 
romagnetic in such a way that each spin interacts with n spins ferromagnetically and 
with z - n spins antiferromagnetically. We have found that such a model, in spite of 
having only nearest-neighbour interactions, displays also a rich phase diagram with 
modulated phases and tricritical points. The version with coordination z = 3 in the 
presence of a field was considered by Morita (1983) who argued that it could have 
the same properties of a certain model on a honeycomb lattice. 

The model we analyse here has some resemblance to the spin glass model (Edwards 
and Anderson 1975, Sherrington and Kirkpatrick 1975) on a Cayley tree. In this 
system each interaction is either ferromagnetic or antiferromagnetic according to a 
certain prescribed probability and its properties are obtained by averaging over all 
configurations of bonds. Our model, however, corresponds to just one specified 
configuration of bonds. Although it includes frustration (the boundary spins are subject 
to an external field), it lacks the second ingredient necessary to obtain a spin glass 
phase, namely the configurational average. If we compare our results with the phase 
diagram of a spin glass we see that in the place of a spin glass phase we have a 
modulated phase. 
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Consider a regular Cayley tree with coordination number z with bonds of type 1 
and type 2. Each site is connected to n sites by bonds of type 1 and to z - n sites by 
bonds of type 2 (see figure 1). Following Morita (1983) we denote by hj” (h j2’ )  the 
effective field on a site which is connected to the innermost shell by a bond of type 
l ( 2 ) .  However, instead of writing the recursion relations in terms of these fields, we 
write them in terms of the variables mi’) and MI2’ defined by 

timli’ = tanh phi“ ,  

where ti = tanh pJi ,  with J ,  and J2 being the interactions associated with bonds of type 
1 and 2, respectively. The recursion relations are then 

“1’ - -tanh{(n - 1) tanh-’(m~’’t ,)+(z-n) tanh-’(mj2’t2)] 

m ( 2 )  I+1 - - tanh[n tanh-’(ml1’t1)+ (z  - n - 1)  tanh-’(m12’t2)]. 

Figure 1. Branch of a Cayley tree with z = 4 and n = 2. The full and broken bonds denote 
interactions of type 1 and 2, respectively. 

The paramagnetic phase corresponds to the region of the phase diagram where the 
trivial fixed point, m(” = 0, of the mapping is stable. By a linear analysis we find that 
the boundary of this region is given by maxilAil = 1, where A l  and A 2  are the eigenvalues 
of the matrix M given by 

Let A be the trace of M and B the determinant of M, that is, 

A = (n - 1) tl + ( z - n - 1) t 2  

and 

B = -(2 - l ) t , t * .  

If A’ 2 4B then the critical line is given by 1 - IAl+ B = 0 and the paramagnetic 
phase borders a ferromagnetic phase if A > 0, or an antiferromagnetic phase if A < 0, 
since the eigenvalues are real. If A2<4B then the critical line is given by B = 1 and 
the paramagnetic phase borders a modulated region since the eigenvalues are non-real. 

Figure 2 shows the critical line for several values of z for a model defined by 
J1 = J > 0 and J2 = -J (model 1). Figure 3 shows the critical line for some values of 
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Figure2. Critical line of model 1 for z = 3 , 5 , 7  and 10. The variable X is defined as X = n/Z. 
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Figure 3. Critical line of model 2 for z = 3 ,  5 ,  7 and 10. The variable X is defined as 
x = ( 1 + J 0 / J ) / 2 .  

z for a model defined by J , =  J ,+J  and J z =  J o - J  with Ja Jo and J > O ,  with n = z / 2  
(model 2 ) .  For the latter the ferromagnetic and antiferromagnetic phase appear only 
for z > 4. 

We consider now the limit of infinite coordination number (Thompson 1982). For 
model 1 we take the limit z + CO, n + a3 and J + 0 so that 

( 2 n - z ) / & = p  

& J = ?  
and 
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In this limit we get A = p p j  and B = (p j ) ’ .  For model 2 we let z + 00, Jo+ 0 and J + 0 
in such a way that 

zJo = .fo 
and 

& J = i  

In this case A = p.fo and B = (p j ) ’ .  If in model 2 we define p by p = jo/-f, then both 
models give identical results in the limit considered. In particular, the critical line is 
given by 

T 2 - l p l T + 1 = 0  for IpI 3 2 

and 

T = l  for Ip( < 2 

where T = (p.f)- l .  

Defining the variables 

I -1 - 2 (  mj’) + mi2))  

and 

qr = -( 1 / 2 p J ) (  mil’ - mj’)) 

the recursion relations are given by 

mi+, = tanh((p/ T ) m -  1 /  T’q,) 

qr+1 = m,[sech((p/ T ) m ,  - ( I /  T2)q1)I2. 

and 

We have analysed in detail this two-dimensional mapping analytically as well as 
numerically and we have found results similar to those of Yokoi and de Oliveira (1985) 
and Yokoi er a1 (1985) for other models also on a Cayley tree. There are four types 
of attractors: (i)  the trivial fixed point m* =0,  q * = O  (which corresponds to the 
paramagnetic structure), (ii) a non-trivial fixed point m* # 0 and q* # 0 (ferromagnetic 
structure), (iii) periodic limit cycles (commensurate structure), and (iv) one- 
dimensional limit cycles (incommensurate structure). For a periodic limit cycle the 
principal wavenumber k is obtained as 2 m /  N where n is the number of turns of the 
vector ( m ,  q )  in N iterations. 

The global phase diagram (figure 4)displays a paramagnetic region, a ferromagnetic 
region, an antiferromagnetic region, and a modulated region. This last one is composed 
of an infinite number of smaller regions, characterised by a wavenumber k /2 .n ,  where 
the rational number k is in the interval [0, 1 /21 .  The transition from the paramagnetic 
to the modulated region results from a Hopf bifurcation and the discommensurations 
are due to tangent bifurcations (see Yokoi and de Oliveira 1985). 

Figure 4 shows regions where more than one type of attractor exists which should 
be an indication of the presence of a first order transition. It shows also tricritical 
points and a Lifshitz point, actually an incipient one since another attractor is present 
which may correspond to a more stable phase. A more detailed analysis of the present 
model will be the subject of a forthcoming publication. 
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Figure 4. Global phase diagram in the limit of infinite coordination number. Paramagnetic 
(P), ferromagnetic (F), antiferromagnetic (A), and modulated (M)  regions are shown. In 
the M region only a few commensurate phases are shown. The F and A regions extend 
up to the broken line overlapping the M and P regions. The four dots are tricritical points. 
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